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Recent experimental and theoretical work on reinforcement learning has shed light on the
neural bases of learning from rewards and punishments. One fundamental problem in
reinforcement learning is the credit assignment problem, or how to properly assign credit to
actions that lead to reward or punishment following a delay. Temporal difference learning
solves this problem, but its efficiency can be significantly improved by the addition of
eligibility traces (ET). In essence, ETs function as decaying memories of previous choices
that are used to scale synaptic weight changes. It has been shown in theoretical studies that
ETs spanning a number of actions may improve the performance of reinforcement learning.
However, it remains an open question whether including ETs that persist over sequences of
actions allows reinforcement learning models to better fit empirical data regarding the
behaviors of humans and other animals. Here, we report an experiment in which human
subjects performed a sequential economic decision game in which the long-term optimal
strategy differed from the strategy that leads to the greatest short-term return. We
demonstrate that human subjects' performance in the task is significantly affected by the
time between choices in a surprising and seemingly counterintuitive way. However, this
behavior is naturally explained by a temporal difference learning model which includes ETs
persisting across actions. Furthermore, we review recent findings that suggest that short-
term synaptic plasticity in dopamine neurons may provide a realistic biophysical
mechanism for producing ETs that persist on a timescale consistent with behavioral
observations.
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1. Introduction

Rewards and punishments generally signify classes of stimuli
that enhance and reduce reproductive fitness, respectively.
Insofar as this is true, learning to maximize rewards and mi-
uter Science, University o
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nimize punishments is a critical challenge faced by the
nervous system. Recent experimental and theoretical work
indicates that midbrain dopamine neurons may play a key
role in this reinforcement learning problem. In particular, the
firing rate of dopamine neurons has been proposed to encode
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Fig. 1 – Rising optimum task. (A) Sample screen during
experiment. The height of bar between the buttons indicates
performance. (B) Dependence of the height of the reward bar
on the last and previous decisions. x-axis shows the
proportions of choices A in the last 20 choices, i.e., the
allocation to A. y-axis shows the height of the reward bar
following the decision. The black curve shows the height of
reward bar after pressing button A for different allocations to
A during the last 20 trials, and the gray curve shows the
height of the reward bar after pressing button B. For example,
if the subject had pressed equal number of A and Bwithin the
last 20 trials and the last choice was A, then the resulting
height of the bar is 0.22—it can be read from panel B by
looking at black line (because subject's last choice was A) for
allocation to A of 0.5 (because the subject pressed A 50% of
times within the last 20 trials).

112 B R A I N R E S E A R C H 1 1 5 3 ( 2 0 0 7 ) 1 1 1 – 1 2 1
the difference between experienced reward and long-term
predicted reward to generate a prediction error used for temporal
difference (TD) learning (Dayan et al., 2000; Egelman et al., 1998;
Montague and Berns, 2002; Montague et al., 1994, 1996;
Montague and Sejnowski, 1994; Schultz et al., 1997). In order
to learn which stimuli or actions may be associated with re-
ward, dopamine-mediated prediction error signals are further
suggested to guide changes in synaptic strength (Montague et
al., 1996, 2006; Reynolds et al., 2001). Specifically, the synaptic
weights associating an environmental situation with the
value of an action are increased if dopamine level is above
baseline levels (signaling positive reinforcement) and de-
creased if it is below baseline levels.

One fundamental problem in reinforcement learning is
known as the credit assignment problem, which refers to the
challenge of properly assigning credit to actions that lead to
reward or punishment when these occur at varying times
prior to the reinforcing event. A simple example arises in the
game of chess, in which a particularly good or bad move may
ensure victory of defeat several moves later. In order to pro-
perly value such a critical move, a reinforcement learning al-
gorithm must properly assign credit backwards through time.
With sufficient training experience, temporal difference
learning can solve this problem, but its efficiency is substan-
tially improved by the addition of eligibility traces (ET) (Barto et
al., 1981; Sutton and Barto, 1998). In essence, eligibility traces
function as decaying memories of previous choices that are
used to scale synaptic weight changes. It has been suggested
that ETsmay be implemented in the brain by elevated levels of
calcium that persist in dendritic spines (at synapses subject to
learning) (Wickens and Kotter, 1995) or a relatively slow
process in synapses triggered by a coincidence of pre-synaptic
and post-synaptic spikes (Izhikevich, in press).

In the neuroscience literature, ETs have been proposed as a
mechanism for dealing with small delays in reinforcement
signal (Raymond and Lisberger, 1998; Wickens and Kotter,
1995). By contrast, computer algorithms implementing artifi-
cial reinforcement learning (e.g. for robot control) sometimes
employ much longer-lasting ETs which persist across many
actions and reinforcements. This allows the reinforcement to
adjust the weights corresponding not only to the most recent
action but also to previous actions in a recency-weighted
manner (Sutton and Barto, 1998). Traces that span a number of
actions may improve the performance of reinforcement
algorithms if the task demands that a particular sequence of
actions be performed to maximize overall rewards (e.g. Singh
and Sutton, 1996; Sutton and Barto, 1998). However, to our
knowledge, the question of whether reinforcement learning in
humans and other animals involves ETs persisting over se-
quences of actions has not yet been investigated. Here we
consider this question.

To test for ET-like mechanisms in human reinforcement
learning, we examine the performance of human subjects in a
sequential economic decision game named the rising optimum
task (Egelman et al., 1998; Montague and Berns, 2002). Briefly,
in the rising optimum task, subjects choose sequentially
between two available actions by pressing one of two buttons:
A or B. After each choice, a scale bar is updated to reflect the
reward earned for that choice (Fig. 1A). Subjects are instructed
to keep andmaintain the bar at the highest possible level over
the course of the experiment. The bar height following a
choice depends on which button was selected and on the
proportion of choices to button A over the previous 20
selections, as shown in Fig. 1B (see legend for details). We
refer to the proportion of A choices in the last 20 decisions as
allocation to A.

The optimal strategy in this task is to press button A on
every choice (as shown in Fig. 1B: reward is greatest at the far
right end of the curve). However, this strategy is not obvious
to the subjects because for allocations to A higher than 0.3
(the point of the intersection of the curves in Fig. 1B),
selecting B results in greater immediate increase in reward
than selecting A. Continuing to select B will produce prog-
ressively lesser rewards, but these will still be greater than
selecting A until the allocation to A falls below 0.3. At that
point, selecting A will produce greater immediate reward. As
a consequence, if subjects are driven primarily by concerns

http://dx.doi.org/doi:10.1093/cercor/bhl152




Fig. 3 – The changes in strategies employed by the subjects. Subjects studied in different delay conditions are shown by
different symbols as indicated in the figure legend. (A–C) The panels correspond to the following phases of the experiment:
trials 1–40, trials 41–80, and trials 81–125, respectively. Each panel plots the proportion of trials in a given phase in which a
subject follows optimal strategy (y-axes) against the proportion of trials it follows the matching strategy (x-axes). (D) The
proportion of trials a subject followed the optimal strategy in trials 81–125 plotted against the proportion of trials it followed this
strategy in trials 1–41. The dashed line indicates the positions in the figure corresponding to equal proportions.
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ever, the data do seem to suggest that subjects become more
committed to particular strategies since, in the later phase
(Fig. 3C), there are more subjects with high proportions (e.g.
above 80% or 90%) of trials under a particular strategy than in
the early phase (Fig. 3A). The commitment to strategies can be
quantified by the variance of the optimizing fractions across
subjects for the following reasons: the subjects committed to
the optimal strategy will have a high value of the optimizing
fraction, while the subjects committed to the matching
strategy will have a low value of the optimizing fraction (due
to the anti-correlation of the optimizing and matching
fractions). Hence the more subjects are committed to their
strategies, the more extreme values of optimizing fractions
will be observed, and thus the higher the variance of the
optimizing fraction across the subjects will be. As expected,
the variance in the optimizing fractions in the late phase is
significantly higher than in the early phase (F-test, p<0.005).

Figs. 3A–C also shows that there are a number of subjects
who do not follow either the matching or optimal strategy,
corresponding to the points in the bottom left quadrants of the
panels. These subjects sometimes choose B also on trials in
which allocation to A is below 0.3. Two factors influence the
presence of this behavior: first, more subjects studied in 2 s
delay condition show this behavior (the mean of the sum of
matching and optimizing fractions based on all trials is
significantly lower for subjects in 2 s condition than in the
other conditions, t-test, p<0.01). Second, more subjects show
this behavior in the late and middle than in the early phases
on the experiment (the mean of the sum of matching and
optimizing fractions based on trials 41–125 is lower than the
one based on trials 1–40, paired t-test, p<0.01). We would like
to come back to the interpretation of this result in the
Discussion section.

Fig. 3D illustrates changes in the strategies of individual
subjects between early and late phases of the experiment.
There is a significant correlation between optimizing fractions
in the two phases (r≈0.46, p<0.000001), which implies that the
subjects are more likely to adopt the same strategies in the
two phases than to change them.

Finally, we tested two simple hypotheses regarding the
reasons for why the subjects choose particular strategies.
First, at shorter intervals subjects may simply have a higher



tendency to choose the same key on two consecutive trials,
and thus some would have a higher allocation to A. This, in
turn, may enable more frequent discovery of the optimal
strategy. However, closer examination of the data suggests
that this is not the case. There is no correlation between
subjects' inter-choice interval and their proportion of repeated
choices (r=−0.005; p=0.95).

Second, it might be reasoned that subjects who started out
with a high allocation to A more frequently discovered the
optimal strategy (as we describe in Section 4, allocation to A
was initialized arbitrarily for each subject by randomly
generating a 20-choice history). However, we found no
evidence for this. The correlation between the optimizing
fraction and the initial allocation to A across subjects is very
weak (r≈0.11) and is not significant (p≈0.18). We further
investigated whether the strategy evident at the beginning of
the experiment depends on the initial allocation to A. Again,
we found no evidence for this as, for any number of initial
trials, the correlation between optimizing fraction and initial
allocation to A is not significant.

In summary, we observed a surprising pattern of perfor-
mance which decreases as the intervals between choices
increase, as illustrated in Fig. 2. The performance did not
change significantly between phases of experiment and was
not influenced by the initial allocation to A. In the reminder of
this section we focus on explaining the results of Fig. 2.

2.2. Reinforcement learning models

Here we consider how reinforcement learning models can
explain the pattern of performance reported above. We begin
by reviewing a previous model of learning in the rising
optimum task (Egelman et al., 1998; Montague and Berns,
2002) thatwe refer to as the standardmodel.We then introduce
an augmented form of this model that includes ETs and use
this to address our empirical observations.

2.2.1. Standard model
Egelman et al. (1998) developed a reinforcement learning
model of performance in the rising optimum task that was
then used by Montague and Berns (2002) to account for
matching behavior in the task. In this model the two possible
actions are associated with weights wA and wB. Choices are
made stochastically using a “softmax” decision rule with the
probability of choosing A given by:

P Að Þ ¼ 1
1þ eAðwB�wAÞ ð1Þ

This decision rule is formally equivalent to the drift diffusion
model (Ratcliff, 1978; Stone, 1960) in which the drift is equal to
wB−wA, noise is equal to 2, and the threshold is equal to μ. The
drift diffusion model implements the continuous version of
the sequential probability ratio test (Laming, 1968), and hence
is the optimal decision maker (Wald and Wolfowitz, 1948).
This model has been used successfully to describe a wide
corpus of empirical data regarding human performance in two
alternative forced choice decision making tasks (Bogacz et al.,
2006; Ratcliff and Smith, 2004; Ratcliff et al., 1999) and is
consistent with recent observations of the neural dynamics
associated with performance in such tasks (Gold and Shadlen,
2001, 2002; Ratcliff, 2006; Ratcliff et al., 2003; Schall, 2001;
Shadlen and Newsome, 1996, 2001).

After each decision an error (δ) is calculated that is equal to
the difference between the new height of the bar and the
expected height of the bar. The expected height of the bar is
taken simply as the weight of the decision just made w*:

d ¼ r�wT ð2Þ

Subsequently the weight associated with the last choice is
updated as follows:

wTpwTþ kd ð3Þ

where λ denotes the learning rate.
Montague and Berns (2002) showed that the standard

model predicts that only matching behavior should occur on
the task (with λ=0.93) since weight modifications are based
strictly on the value of the reward associated with the last
choice. Hence, when allocation to A is greater than 0.3 and
choosing B yields a higher reward than choosing A (see Fig. 1B),
the model reinforces choosing B and the allocation to A
decreases. Conversely, when allocation to A is less than 0.3
and choosing A yields higher reward than choosing B, the
model reinforces choosing A so the allocation to A increases.
Therefore, allocation to A converges to around 0.3 in the stan-
dard model. This reproduces the matching behavior predicted
by the process of melioration proposed by Herrnstein (1982,
1990) to govern human decision making behavior. However,
the standard model cannot readily explain the behavior of
subjects who discover the optimal strategy1, nor the depen-
dence of this behavior on inter-choice delay, since there is no
notion of time in the model.

2.2.2. Eligibility trace model
The effects of delay can be introduced into the standardmodel
by including a mechanism for ETs (Sutton and Barto, 1998). To
do so, wemodified themodel of Montague and Berns (2002) by



Update ETs

eA ¼ eAexpð�s�1TÞ; eB ¼ eBexpð�s�1TÞ
e* ¼ e*þ 1 ð4Þ

Update both weights

wApwA þ kdeA ð5Þ

wBpwB þ kdeB ð6Þ

In Eq. (4), T denotes the time from the last update of the ET
(i.e., from the previous choice). Note that if the decay rate of
the ET is very rapid (τ¯ is small), or the time between choices T
is large, then the ET model reduces to the standard model.
This is because, according to Eq. (4), both ETs decay to zero
during the interval T. Accordingly, the weight modification is
determined strictly by w* since e* is incremented to 1 before
the weights are updated. Thus, for sufficiently long intervals
between choices T, the ET model reduces to the standard
model and produces matching behavior. This is consistent
with the observation that subjects in our experiment exhibit a
greater propensity for matching behavior as the delay is
increased (i.e., for longer inter-choice intervals; see Fig. 2).

Conversely, when the inter-choice interval is short, then
ETs provide a (fading) memory of recent choices. For example,
if the last choice was B, but preceding choices were pre-
dominantly A, then the ET eA may be larger than eB. In this
case, the positive reward received for choosing B will reinforce
not only that decision, but also A (since eA is elevated due to
the previous decisions). Therefore if choosing A generates
sufficiently consistent (and increasing) benefits, this will be
progressively reinforced. This will be particularly true when
the inter-choice time is short andmore decisions contribute to
the eligibility trace. This condition of progressively increasing



Fig. 4 – The comparison between allocation to A in the model and experiment. (A) Subjects' mean allocation to A (white dots)
and the probability distribution of the mean allocation to A of the ET model (colors) for the parameters resulting in the
maximum likelihood, namely: τ=4.89, λ=0.1675, μ=12.2. The probability distribution of ET model was found in the
simulations in the following way. The inter-choice interval was discretized by dividing it into bins 0.5 s long. For a given set of
model parameters, the probability distribution of mean allocation to A was estimated for the inter-choice intervals T
corresponding to all centers of the bins. For each T, the ETmodelwas simulated 1000 times performing the rising optimum task
for 125 trials, and for each simulation themean allocation to Awas computed. The distribution ofmean allocation to Awas then
obtained by building the histogram with 10 bins. Such procedure results in some bins of the histogram being empty and thus
P (A|T)=0 for T and A corresponding to these bins. If any of the subjects' Tk and Ak fall into these bins, then the whole
likelihood of Eq. (7) would be equal to 0. To avoid this problems the probability density P (A|T) for empty bins is set up 0.01.
(B) Histograms of allocation to A in three experimental conditions concerningminimal interval between choices for the subjects
(black bars) and for the model (while bars). The model was simulated with the same parameters τ, λ, and μ as above.
For each panel (i.e., simulated condition) the model was simulated (performing the rising optimum task for 125 trials) for the
following number of times: one thousandmultiplied by the number of subjects run in this condition. In each thousand of trials,
T was equal to mean inter-choice interval of one of the subjects from the given condition.
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rising optimum task (<1–2 s), facilitation is known to do-
minate changes in dopamine release (Montague et al., 2004).
Furthermore, the time constant of this facilitation process was
found to be roughly 4.5 s, which corresponds closely to the
time constant of ET decay that produced the maximum
likelihood fit to subjects' behavioral data.

To further explore how the dynamics of dopamine release
may relate to ETs, we incorporated detailed mechanisms of
dopamine release (using best fit parameters fromMontague et
al., 2004) into our model of the rising optimum task, and
compared the dynamics of this dopamine signal with the ET in
the model described above. In particular, dopamine release is
proposed to drive the change in weights (wA and wB) between
sensory inputs and corresponding motor output (Fig. 5A).
Separate dopamine terminals modifying wA and wB were
modeled to be independent but subject to synaptic plasticity
with equal parameter values. Kicks to short-term facilitation
and depression terms were modeled to occur only after choice
of the corresponding action. Biologically, this action depen-
dence of synaptic plasticity requires that the output of do-
pamine target structures (e.g. action selection in the striatum)
be communicated to the dopamine terminals. This effect may
be mediated by the production of nitric oxide (e.g. by striatal
interneurons) which is known to influence DA neuron activity



(West and Grace, 2000). Driving both the ET model and the
dopamine model with choices made by subjects producedFig. 5B). These observations illustrate that the
dynamics of dopamine release observed at the synaptic level
correspond closely to those of the ET that provide the best
account of behavioral observations.
3. Discussion

3.1. Summary

We have shown that a reinforcement learning model that
the ET that closely match those observed for dopamine sy-
naptic release in neurophysiological studies.

To achieve optimal performance in the rising optimum
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studied in the free response condition have variance of 0.021
which is significantly higher (chi-square test, p<0.0001).
Second, to quantify the randomness in subjects' response
more precisely, we investigated how the decision threshold μ
(described in Eq. (1); measure of how deterministic the choices
are) changes as a function of inter-choice interval. We fitted
four separate ET models, each one to the data from a group of
subjects with one of the following inter-choice intervals: 0–1 s,
1–2 s, 2–3 s, and 3–4 s, using the method of Section 2.2.3. The
estimated values of the decision threshold μ for each interval
were 15.8, 13.9, 12.4, and 13.5, respectively, and did not show
significant increasing or decreasing trend (correlation
between the values of the threshold and centers of the inter-
choice intervals for which they were estimated was not
significant, p>0.2).

Alternatively, it is possible that subjects who discover the
optimal strategy rely on more sophisticated cognitive pro-
cesses than standard reinforcement learning supposes. For
example, there have been recent efforts to extend reinforce-
ment learning theories to include model-based mechanisms,
thought to rely on higher level cortical systems (such as
prefrontal cortex) that can support a richer representation of
the state space and can adapt flexibly to changes in the
environment (e.g. Daw et al., 2005). However, it seems unlikely
that such mechanisms could account for our findings. Ty-
pically, model-based mechanisms represent a tradeoff of
greater flexibility at the cost of greater computational com-
plexity, which is typically assumed to involve greater time for
each decision. This runs counter to our finding that subjects
were more likely to discover the optimal strategy when they
had less, not more time for each decision.

In the rising optimum task, the engagement of the model-
based mechanisms might still be possible in the 2 s delay
condition, when subjects had most time to consider the
alternative choices, and in the later phase of the experiment,
when theyweremore familiar with the task and could allocate
more attentional resources to modeling the task. Analysis of
Figs. 3A–C in Section 2.1 is consistent with a presence of such
an engagement. Recall that there are a number of subjects
who do not follow either the matching or optimal strategy as
they sometimes choose B also on trials in which allocation to
A is below 0.3. Such behavior might be a result of testing some
higher order models. As shown in Section 2.1, this behavior is
present in the same conditions when the engagement of the
model-based mechanisms could be expected, i.e., in 2 s delay
condition and in the later phases on the experiment.

Nevertheless, to adjudicate satisfactorily between these
hypotheses, it is necessary to develop a model of the task
involving model-based learning mechanisms and then iden-
tify quantitative predictions regarding behavioral and/or neu-
ral measurements that differ between this and the ET model.
Of course, it is also possible (even likely) that both types of
mechanism contribute to human performance.

Experimental evidence indicates that, in other gambling
tasks, the prefrontal cortex initiates control process allowing
the subjects to make a choice leading to a lower immediate
payoff, for example: (i) lesions to prefrontal cortex are
known to impair performance in gambling tasks (Manes et
al., 2002). (ii) Certain regions of frontal cortex are more
activated on the trials in which subjects make exploratory
choices often leading to lower immediate reward (Daw et al.,
2006). It has been shown also that the prefrontal cortex is
activated when a significant change to the policy is required
(Li et al., 2006). Thus, one could predict that increased
activity in the prefrontal cortex may occur in our experiment
when subjects employ model-based decision mechanisms in
2 s delay condition.

3.3. Individual differences

While comparing the ET model with the experimental data,
we fit a model with a single set of parameters to the data from
all subjects. Hence the variability in behavior for shorter inter-
choice intervals in simulations shown in Fig. 4 comes only
from the stochastic decision rule of Eq. (1). Aswementioned in
Section 2.2.3, it is likely that the variability of subjects'
behavior also reflects individual differences in the parameters
of their reinforcement learning systems. Indication for such
an influence has been provided by Montague and Berns (2002).
Subjects who performed the rising optimum task were also
asked to participate in an experiment in which brain activity
was monitored during delivery of sequences of fruit juice and
water. In this experiment, the sequences were predictable on
some blocks and unpredictable on others. It is known that the
striatum is more activated by unpredictable than predictable
sequences (Berns et al., 2001). Most importantly, this ‘predict-
ability’ difference was higher in the subjects who used the
optimal strategy in the rising optimum task than subjects who
used the matching strategy. This may indicate that individual
differences in the characteristics of striatal responses across
subjects may influence their choice of strategy in the rising
optimum task.

One could also ask if the difference in strategies chosen can
be influenced by the subjects' discount function for future re-
ward (independently of the decay rate of the eligibility trace). If
this were the case, the subjects heavily discounting future
rewards may choose the strategy resulting in higher immedi-
ate reward (i.e., matching), while the other subjects may
choose the strategy resulting in long-term pay-off (i.e., op-
timal). It is not possible to test this hypothesis within our
model because it does not include the discount factor para-
meter. To verify this hypothesis, one could ask the subjects
who performed the rising optimum task to also perform a task
allowing estimation of subjects' discount factor (e.g. Benzion
et al., 1989).

3.4. Conclusions

Previous modeling work of reward learning and decision-
making has made profitable use of the simplest possible rein-
forcement learning algorithm. While these models accurately
predicted behavior in a number of simple economic games
(Egelman et al., 1998), they are unable to account for optimal
behavior in tasks where matching is not the optimal strategy
(e.g. rising optimum task considered here). Here, we have
demonstrated how performance depends on inter-choice
interval in a principled way (Sutton and Barto, 1998) through
the use of ET mechanisms. The success of the current model
suggests that in humans reinforcement learning operates over
a (decaying) memory of recent actions and not just the last



action performed. Furthermore, the time constant of decay
that we estimated for this memory corresponds closely to the
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